Certified dimension reduction in nonlinear Bayesian inverse problems
نویسندگان
چکیده
We propose a dimension reduction technique for Bayesian inverse problems with nonlinear forward operators, non-Gaussian priors, and observation noise. The likelihood function is approximated by ridge function, i.e., map which depends nontrivially only on few linear combinations of the parameters. build this approximation minimizing an upper bound Kullback–Leibler divergence between posterior distribution its approximation. This bound, obtained via logarithmic Sobolev inequalities, allows one to certify error Computing requires computing second moment matrix gradient log-likelihood function. In practice, sample-based then required. provide analysis that enables control due sampling. Numerical theoretical comparisons existing methods illustrate benefits proposed methodology.
منابع مشابه
Likelihood-informed dimension reduction for nonlinear inverse problems
The intrinsic dimensionality of an inverse problem is affected by prior information, the accuracy and number of observations, and the smoothing properties of the forward operator. From a Bayesian perspective, changes from the prior to the posterior may, in many problems, be confined to a relatively lowdimensional subspace of the parameter space. We present a dimension reduction approach that de...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Model order reduction for Bayesian approach to inverse problems
This work presents an approach to solve inverse problems in the application of water quality management in reservoir systems. One such application is contaminant cleanup, which is challenging because tasks such as inferring the contaminant location and its distribution require large computational efforts and data storage requirements. In addition, real systems contain uncertain parameters such ...
متن کاملParameter and State Model Reduction for Bayesian Statistical Inverse Problems
Decisions based on single-point estimates of uncertain parameters neglect regions of significant probability. We consider a paradigm based on decision-making under uncertainty including three steps: identification of parametric probability by solution of the statistical inverse problem, propagation of that uncertainty through complex models, and solution of the resulting stochastic or robust ma...
متن کاملNonlinear Dimension Reduction
A series of different data sets were used for testing eight different non-linear dimension reduction methods. The data sets provided insight to various ways of using the methods and to their applications. The results are compared for the different methods and reasons for their behaviour is searched for. Results are mostly quite encouraging and usable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2022
ISSN: ['1088-6842', '0025-5718']
DOI: https://doi.org/10.1090/mcom/3737